The History of Air Conditioning
While moving heat via machinery to provide air conditioning is a relatively modern invention, the cooling of buildings is not. Wealthy ancient Romans circulated aqueduct water through walls to cool their luxurious houses.The 2nd century Chinese inventor Ding Huan (fl. 180) of the Han Dynasty invented a rotary fan for air conditioning, with seven wheels 3 m (10 ft) in diameter and manually powered. In 747, Emperor Xuanzong (r. 712–762) of the Tang Dynasty (618–907) had the Cool Hall (Liang Tian) built in the imperial palace, which the Tang Yulin describes as having water-poweredfan wheels for air conditioning as well as rising jet streams of water from fountains. During the subsequent Song Dynasty (960–1279), written sources mentioned the air conditioning rotary fan as even more widely used.Medieval Persia had buildings that used cisterns and wind towers to cool buildings during the hot season: cisterns (large open pools in central courtyards, not underground tanks) collected rain water; wind towers had windows that could catch wind and internal vanes to direct the airflow down into the building, usually over the cistern and out through a downwind cooling tower. Cistern water evaporated, cooling the air in the building. Wind catchers were widely used throughout the medieval Muslim world, where they were used for air conditioning in many cities.Ventilators were invented in medieval Egypt and were widely used in many houses throughout Cairo during the Middle Ages. These ventilators were later described in detail by Abd al-Latif al-Baghdadi in 1200, who reported that almost every house in Cairo has a ventilator, and that they cost anywhere from 1 to 500 dinars depending on their sizes and shapes. Most ventilators in the city were oriented towards the Qibla, as was the city in general.In the 1600s Cornelius Drebbel demonstrated "turning Summer into Winter" for James I of England by adding salt to water.In 1758, Benjamin Franklin and John Hadley, professor of chemistry at Cambridge University, conducted an experiment to explore the principle of evaporation as a means to rapidly cool an object. Franklin and Hadley confirmed that evaporation of highly volatile liquids such as alcohol and ether could be used to drive down the temperature of an object past the freezing point of water. They conducted their experiment with the bulb of a mercury thermometer as their object and with a bellows used to "quicken" the evaporation; they lowered the temperature of the thermometer bulb down to 7°F while the ambient temperature was 65°F. Franklin noted that soon after they passed the freezing point of water (32°F) a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about a quarter inch thick when they stopped the experiment upon reaching 7°F. Franklin concluded, "From this experiment, one may see the possibility of freezing a man to death on a warm summer's day".In 1820, British scientist and inventor Michael Faraday discovered that compressing and liquefying ammonia could chill air when the liquefied ammonia was allowed to evaporate. In 1842, Florida physician John Gorrie used compressor technology to create ice, which he used to cool air for his patients in his hospital in Apalachicola, Florida. He hoped eventually to use his ice-making machine to regulate the temperature of buildings. He even envisioned centralized air conditioning that could cool entire cities. Though his prototype leaked and performed irregularly, Gorrie was granted a patent in 1851 for his ice-making machine. His hopes for its success vanished soon afterwards when his chief financial backer died; Gorrie did not get the money he needed to develop the machine. According to his biographer, Vivian M. Sherlock, he blamed the "Ice King", Frederic Tudor, for his failure, suspecting that Tudor had launched a smear campaign against his invention. Dr. Gorrie died impoverished in 1855 and the idea of air conditioning faded away for 50 years.In 1902, the first modern electrical air conditioning unit was invented by Willis Haviland Carrier in Buffalo, NY. After graduating from Cornell University, Carrier, a native of Angola, NY, found a job at the Buffalo Forge Company. While at Buffalo Forge, Carrier began experimentation with air conditioning as a way to solve an application problem for the Sackett-Wilhelms Lithographing and Publishing Company in Brooklyn, New York, and the first "air conditioner," designed and built in Buffalo by Carrier, began working 17 July 1902.Designed to improve manufacturing process control in a printing plant, Carrier's invention controlled not only temperature but also humidity. Carrier used his knowledge of the heating of objects with steam and reversed the process. Instead of sending air through hot coils, he sent it through cold coils (ones filled with cold water). The air blowing over the cold coils cooled the air, and one could thereby control the amount of moisture the colder air could hold. In turn, the humidity in the room could be controlled. The low heat and humidity were to help maintain consistent paper dimensions and ink alignment. Later, Carrier's technology was applied to increase productivity in the workplace, and The Carrier Air Conditioning Company of America was formed to meet rising demand. Over time, air conditioning came to be used to improve comfort in homes and automobiles as well. Residential sales expanded dramatically in the 1950s.In 1906, Stuart W. Cramer of Charlotte, North Carolina, USA, was exploring ways to add moisture to the air in his textile mill. Cramer coined the term "air conditioning", using it in a patent claim he filed that year as an analogue to "water conditioning", then a well-known process for making textiles easier to process. He combined moisture with ventilation to "condition" and change the air in the factories, controlling the humidity so necessary in textile plants. Willis Carrier adopted the term and incorporated it into the name of his company. This evaporation of water in air, to provide a cooling effect, is now known as evaporative cooling.The first air conditioners and refrigerators employed toxic or flammable gases like ammonia, methyl chloride, and propane which could result in fatal accidents when they leaked.Thomas Midgley, Jr. created the first chlorofluorocarbon gas, Freon, in 1928.Freon is a trademark name of DuPont for any Chlorofluorocarbon (CFC), Hydrogenated CFC (HCFC), or Hydrofluorocarbon (HFC) refrigerant, the name of each including a number indicating molecular composition (R-11, R-12, R-22, R-134A). The blend most used in direct-expansion home and building comfort cooling is an HCFC known as R-22. It is to be phased out for use in new equipment by 2010 and completely discontinued by 2020. R-12 was the most common blend used in automobiles in the US until 1994 when most changed to R-134A. R-11 and R-12 are no longer manufactured in the US for this type of application, the only source for air conditioning purchase being the cleaned and purified gas recovered from other air conditioner systems. Several non-ozone depleting refrigerants have been developed as alternatives, including R-410A, invented by Honeywell (formerly AlliedSignal) in Buffalo, NY, and sold under the Genetron (R) AZ-20 name. It was first commercially used by Carrier under the brand name Puron.Innovation in air conditioning technologies continues, with much recent emphasis placed on energy efficiency, and on improving indoor air quality. Reducing climate change impact is an important area of innovation, because in addition to greenhouse gas emissions associated with energy use, CFCs, HCFCs and HFCs are, themselves, potent greenhouse gases when leaked to the atmosphere. For example, R-22 (also known as HCFC-22) has a global warming potential about 1,800 times higher than CO2. As an alternative to conventional refrigerants, natural alternatives like CO2 (R-744) have been proposed.

History of Air Conditioning